CYCLIC ACYL COMPLEXES OF PALLADIUM(II). SYNTHESIS AND NMR SPECTROSCOPY OF ACYL COMPLEXES DERIVED FROM QUINOLINE-8-CARBALDEHYDE AND 2-(DIMETHYLAMINO)BENZALDEHYDE

C.G. ANKLIN and P.S. PREGOSIN

Laboratorium für Anorganische Chemie, ETH Züruch, Universitätstrasse 6, CH-8092 Zürich (Switzerland)
(Received August 19th, 1982)

Summary

The room temperature syntheses of new chelating acyl palladium(II) complexes, $\left[\mathrm{Pd}(\mu-\mathrm{Cl})\left(\mathrm{C}(\mathrm{O}) \mathrm{C}_{9} \mathrm{H}_{6} \mathrm{~N}\right)\right]_{2}$ and $\left[\mathrm{Pd}(\mu-\mathrm{Cl})\left(\mathrm{C}(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right)\right]_{2}$, derived from quinoline-8-carbaldehyde and 2-(dimethylamino)benzaldehyde are described. These chloro bridged dimers may be cleaved with neutral phosphine and nitrogen ligands, L , to give the monomeric $\left[\mathrm{PdCl}\left(\mathrm{C}(\mathrm{O}) \mathrm{C}_{9} \mathrm{H}_{6} \mathrm{~N}\right) \mathrm{L}\right]$ and $\left[\mathrm{PdCl}\left(\mathrm{C}(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right) \mathrm{L}\right.$] compounds. ${ }^{1} \mathrm{H}$-, ${ }^{13} \mathrm{C}$ - and ${ }^{31} \mathrm{P}-\mathrm{NMR}$ data for the new complexes are reported.

Introduction

Acyl complexes of transition metals are known to be intermediates in the hydroformylation reaction [1], and an increasing number of studies have been dedicated to their reactivity [2]. As part of our interest in this area we have synthesized $\mathrm{Pd}^{\mathrm{II}}$ and $\mathrm{Pt}^{\mathrm{II}}$ complexes containing cyclic acyl ligands of the general type $\left[\mathbf{M}(\mathrm{O} \sim \mathrm{CO}) \mathrm{L}_{2}\right],(\mathrm{L}=$ tertiary phosphine $)$ derived from salicylaldehyde [3,4]. These can be prepared by deprotonation of the phenol oxygen, followed by oxygen coordination to the metal, and subsequent activation of the aldehyde. A similar type of aldehyde activation has been reported for the ligand 2-diphenylphosphinobenzaldehyde [5], using Ir^{I} and $\mathrm{Pt}^{\mathrm{II}}$ precursors.

Having noted that prior coordination of either oxygen or phosphorus leads to formation of cyclic acyl complexes, we have investigated the products of the reaction of palladium salts with organic aldehydes which contain nitrogen coordination sites, and describe below the synthetic and spectroscopic results for quinoline-8-carbaldehyde and 2-(dimethylamino) benzaldehyde.

Results and discussion

Quinoline-8-carbaldehyde derivatives

The binuclear complex (II) was prepared from ligand (I) as shown in eqn. 1. Two

equivalents of I are required since HCl is formed during the reaction and protonates the quinoline. As the reaction progresses the product precipitates out as a stable yellow solid which may be isolated by conventional means. The derivatives III-V are easily prepared by reaction of two equivalents of the appropriate ligand, with one

$$
\begin{equation*}
\left(L=P P h_{3} \text { (III) ; } \mathrm{PEt}_{3} \text { (IV) } ; 4-\mathrm{NC}_{5} \mathrm{H}_{4} \mathrm{CH}_{3}\right. \tag{音}
\end{equation*}
$$

equivalent of dimer in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and these are also stable yellow complexes. The new cyclic compounds were characterized by microanalytical, IR (Table 1), ${ }^{1}$ II (Table 2) and ${ }^{13} \mathrm{C}$ (Table 3) NMR spectroscopy. Where appropriate ${ }^{31} \mathrm{P}$ NMR spectra were also recorded. The $\nu(\mathrm{C}=\mathrm{O})$ stretches, $1670-1700 \mathrm{~cm}^{-1}$, are in the region expected for an acyl coordinated to $\mathrm{Pd}^{11}[4]$, and lie on both sides of that found for the free ligand, $1685 \mathrm{~cm}^{-1}$. For II and V where the carbonyl is trans to a relatively poor donor, the carbonyl stretch is found at higher frequency. Unfortunately, II is extremely insoluble in non-coordinating solvents, such as CDCl_{3} and $\mathrm{CD}_{2} \mathrm{Cl}_{2}$, so that NMR data are unavailable for this complex; however, the presence of the coordinated chelating acyl is clearly shown by the ${ }^{1} \mathrm{H}$ NMR spectrum of IV. The high field region contains the $\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}$ signals at $\delta(\mathrm{ppm}) 1.23\left(\mathrm{CH}_{3}\right)$ and 2.01 $\left(\mathrm{CH}_{2}\right)$, whereas the low field portion of the spectrum shows six groups of signals for the protons $\mathrm{H}_{2}-\mathrm{H}_{7}$. The aldehyde proton, initially observed in the ligand at $\delta 1 i .48$ ppm, is absent. The assignment of the proton signals was made using homonuclear decoupling techniques combined with spin-spin coupling patterns.

We note that the ${ }^{1} \mathrm{H}$ signals from $\mathrm{H}_{2}-\mathrm{H}_{4}$ are deshielded upon complexation, as expected as a result of development of some positive charge on nitrogen due to complexation. Interestingly, for III, IV and VI, we observe long-range coupling (1-3 Hz) of the ${ }^{31} \mathrm{P}$ nucleus through the metal to H_{2} and H_{3}; however, this is not unprecedented as we have made similar observations in the chemistry of coordinated

TABLE 1
ANALYTICAL AND IR DATA

Complex	Analysis found (calcd.) (\%)					$\operatorname{IR}(\nu(\mathrm{CO}))^{\text {a }}$
	C	H	N	Cl	P	
II	$\begin{aligned} & 40.15 \\ & (40.30) \end{aligned}$	$\begin{aligned} & 2.08 \\ & (2.03) \end{aligned}$	$\begin{aligned} & 4.64 \\ & (4.70) \end{aligned}$	$\begin{aligned} & 11.89 \\ & (11.92) \end{aligned}$	-	1700
III	$\begin{aligned} & 59.57 \\ & (59.14) \end{aligned}$	$\begin{aligned} & 3.82 \\ & (3.86) \end{aligned}$	$\begin{aligned} & 2.45 \\ & (2.55) \end{aligned}$	$\begin{aligned} & 7.18 \\ & (6.47) \end{aligned}$	$\begin{aligned} & 5.34 \\ & (5.65) \end{aligned}$	1670
IV	$\begin{aligned} & 47.20 \\ & (46.17) \end{aligned}$	$\begin{aligned} & 5.33 \\ & (5.09) \end{aligned}$	$\begin{aligned} & 3.18 \\ & (3.36) \end{aligned}$	-	$\begin{aligned} & 6.78 \\ & (7.45) \end{aligned}$	1670
$\mathrm{V}^{\text {b }}$	$\begin{aligned} & 48.13 \\ & (49.13) \end{aligned}$	$\begin{aligned} & 4.06 \\ & (4.04) \end{aligned}$	$\begin{aligned} & 7.16 \\ & (6.79) \end{aligned}$	$\begin{aligned} & 9.67 \\ & (9.06) \end{aligned}$	-	1680
$\mathrm{VI}^{\text {b }}$	$\begin{aligned} & 55.29 \\ & (57.82) \end{aligned}$	$\begin{aligned} & 4.04 \\ & (4.06) \end{aligned}$	$\begin{aligned} & 1.69 \\ & (1.87) \end{aligned}$	-	-	1674
VIII	$\begin{aligned} & 37.58 \\ & (37.27) \end{aligned}$	$\begin{aligned} & 3.40 \\ & (3.47) \end{aligned}$	$\begin{aligned} & 4.66 \\ & (4.83) \end{aligned}$	$\begin{aligned} & 12.43 \\ & (12.22) \end{aligned}$	-	1675
IX	$\begin{aligned} & 58.83 \\ & (58.71) \end{aligned}$	$\begin{aligned} & 4.63 \\ & (4.56) \end{aligned}$	$\begin{aligned} & 2.50 \\ & (2.54) \end{aligned}$	$\begin{aligned} & 6.64 \\ & (6.42) \end{aligned}$	$\begin{aligned} & 4.73 \\ & (5.61) \end{aligned}$	1658
X	$\begin{aligned} & 44.85 \\ & (44.13) \end{aligned}$	$\begin{aligned} & 6.23 \\ & (6.17) \end{aligned}$	$\begin{aligned} & 3.20 \\ & (3.43) \end{aligned}$	$\begin{aligned} & 8.39 \\ & (8.68) \end{aligned}$	$\begin{aligned} & 6.96 \\ & (7.59) \end{aligned}$	1656
XI ${ }^{\text {b }}$	$\begin{aligned} & 45.71 \\ & (47.13) \end{aligned}$	$\begin{aligned} & 4.32 \\ & (4.47) \end{aligned}$	$\begin{aligned} & 7.00 \\ & (7.31) \end{aligned}$	-	-	1681
XII ${ }^{\text {b }}$	$\begin{aligned} & 56.03 \\ & (56.82) \end{aligned}$	$\begin{aligned} & 4.80 \\ & (4.63) \end{aligned}$	$\begin{aligned} & 1.75 \\ & (1.89) \end{aligned}$	-	-	1660

${ }^{a}$ As KBr pellets, in $\mathrm{cm}^{-1}{ }^{b}$ These complexes show a tendency to lose CO when heated. Consequently the $\% \mathrm{C}$ found is often slightly low.

Schiff's bases [6]. A similar ${ }^{1} \mathrm{H}$ assignment was made for the PPh_{3} complex III, and by analogy for the remaining complexes.

The ${ }^{13} \mathrm{C}$ spectra for III and IV show signals for $\mathrm{C}(2), \mathrm{C}(9)$ and the acyl carbonyl which are readily assignable using literature data [7]. Of primary interest is the $=15$ ppm low field coordination shift of the carbonyl carbon, a value similar to that found for the salicylaldehyde acyl complexes [3].

The ${ }^{31} \mathbf{P}$ spectra for III and IV reveal the expected single resonances at 39.1 and

(D])
TABLE 2
${ }^{1}$ H NMR DATA ${ }^{a}$ FOR THE LIGANDS AND COMPLEXES ($\left.\delta(\mathrm{ppm}), J(\mathrm{~Hz})\right)$

Compound	H(2)	H(3)	H(4)	H(5)	H(6)	H(7)	others
I	$\begin{aligned} & \delta 9.05 \\ & J(\mathrm{H}(2), \mathrm{H}(3)) 4.1 \\ & (\mathrm{H}(2), \mathrm{H}(4)) 1.8 \end{aligned}$	$\begin{aligned} & 7.45 \\ & (\mathbf{H}(3), \mathbf{H}(4)) 8.3 \end{aligned}$	8.25	$\begin{aligned} & 8.12 \\ & (\mathbf{H}(5), \mathrm{H}(6)) 8.1 \\ & (\mathbf{H}(5), \mathrm{H}(7)) 1.5 \end{aligned}$	$\begin{aligned} & 7.70 \\ & (\mathrm{H}(6), \mathrm{H}(7)) 7.0 \\ & (\mathrm{H}(6), \mathrm{CHO}) 0.8 \end{aligned}$	8.35	CHO 11.48
III	$\begin{aligned} & \delta 10.14 \\ & J(\mathrm{H}(2), \mathrm{H}(3)) 4.8 \\ & (\mathrm{H}(2), \mathrm{H}(4)) 1.4 \end{aligned}$	$\begin{aligned} & 7.72 \\ & (\mathbf{H}(3), \mathbf{H}(4)) 8.3 \end{aligned}$	8.49	$\begin{aligned} & 7.92 \\ & (\mathbf{H}(5), \mathrm{H}(6)) 8.0 \\ & (\mathrm{H}(5), \mathrm{H}(7)) 1.2 \end{aligned}$	$\begin{aligned} & 7.62 \\ & (\mathrm{H}(6) \cdot \mathrm{H}(7)) 7.3 \end{aligned}$	8.06	$\mathrm{PPh}_{3} 7.8$ \& 7.41 multiplets
IV	$\begin{aligned} & \delta 10.02 \\ & J(\mathrm{H}(2), \mathrm{H}(3)) 4.9 \\ & (\mathrm{H}(2), \mathrm{H}(4)) 1.4 \\ & (\mathrm{P}, \mathrm{H}(2)) \mathbf{3} .4 \end{aligned}$	$\begin{aligned} & 7.70 \\ & (\mathrm{H}(3), \mathrm{H}(4)) 8.2 \\ & (\mathrm{P}, \mathrm{H}(3)) 1 \end{aligned}$	8.47	$\begin{aligned} & 8.08 / 8.04^{b} \\ & (H(5), H(7)) 1.2 \end{aligned}$	$\begin{aligned} & 7.68 \\ & (\mathrm{H}(6) \cdot(\mathrm{H}(5 / 7)) 7.3 / 7.9 \end{aligned}$	8.04/8.06 ${ }^{\text {b }}$	$\begin{aligned} & \mathrm{P}-\mathrm{C}-\mathrm{CH}_{3} 1.23 \\ & (\mathrm{H}, \mathrm{H}) 7 ;(\mathrm{P}, \mathrm{H}) 17 \\ & \mathrm{P}-\mathrm{CH} \mathrm{H}_{2}-\mathrm{C} 2.07(\mathrm{P}, \mathrm{H}) 10 \end{aligned}$
V	$\begin{aligned} & \delta 10.08 \\ & J(\mathbf{H}(2), \mathrm{H}(3)) 5.2 \\ & (\mathrm{H}(2), \mathrm{H}(4)) 1.3 \end{aligned}$	$\begin{aligned} & 7.68 \\ & (H(3), H(4)) 8.2 \end{aligned}$	8.49	$\begin{aligned} & 8.14 / 8.09^{b} \\ & (\mathbf{H}(5), H(7)) 1.3 \end{aligned}$	$\begin{aligned} & 7.67 \\ & (H(6), H(5 / 7)) 7.1 / 8.3 \end{aligned}$	8.90/8.14 ${ }^{\text {b }}$	
VI	88.55	c)	8.79	$8.23 / 8.02^{5}$	‘	$8.02 / 8.23{ }^{\text {b }}$	$-\mathrm{PPh}_{2} 7.5 \neq 7.8$ multiplet

	$\begin{aligned} & J(\mathrm{H}(2), \mathrm{H}(3)) 4.9 \\ & (\mathrm{H}(2), \mathrm{H}(4)) 1.4 \\ & (\mathrm{P}(1), \mathrm{H}(2)) 3.5 \\ & (\mathrm{P}(2), \mathrm{H}(2)) 1 \end{aligned}$			($\mathbf{H}(5) . \mathbf{H}(7)$) 1.2			
VII	$\begin{aligned} & \delta 2.92 \\ & J \end{aligned}$	$\begin{aligned} & 7.04 \\ & (\mathrm{H}(3), \mathrm{H}(4)) 8.9 \\ & (\mathrm{H}(3), \mathrm{H}(5)) 1.3 \end{aligned}$	$\begin{aligned} & 7.46 \\ & (\mathrm{H}(4), \mathrm{H}(5)) 7.1 \\ & (\mathrm{H}(4), \mathrm{H}(6)) 1.7 \end{aligned}$	$\begin{aligned} & 7.00 \\ & (\mathbf{H}(5), \mathbf{H}(6)) 7.7 \end{aligned}$	7.76	CHO	10.23
VIII	$\begin{aligned} & \delta 3.44 \\ & J \end{aligned}$	$\begin{aligned} & 7.50 \\ & (\mathrm{H}(3), \mathrm{H}(4)) 7.8 \\ & (\mathrm{H}(3), \mathrm{H}(5)) 1.2 \end{aligned}$	$\begin{aligned} & 7.60 \\ & (H(4), H(5)) 6.9 \\ & (H(4), H(6)) 1.4 \end{aligned}$	$\begin{aligned} & 7.27 \\ & (H(5), H(6)) 7.7 \end{aligned}$	7.65		
IX	$\begin{aligned} & \delta 3.48 \\ & J(\mathrm{H}, \mathrm{P}) 1.7 \end{aligned}$	d					
X	$\begin{aligned} & \delta 3.35 \\ & J \end{aligned}$						
XI	$\begin{aligned} & \delta 3.58 \\ & J \end{aligned}$						
XII	$\delta 3.12$ J broad						

${ }^{a} \mathrm{CDCl}_{3}$ solutions at room temperature. ${ }^{b}$ Resonances not assigned: $\mathrm{H}(5)$ and $\mathrm{H}(7)$ respectively. ${ }^{\boldsymbol{c}}$ Resonances under PPh_{2} multiplet. ${ }^{d}$ The aromatic resonances of the compounds IX-XII were either not resolved or lie under the signals of the phenyl groups of the phosphine ligands.
TABLE 3
${ }^{13}$ C NMR CHEMICAL SHIFT DATA ${ }^{a}$

Compound	C(2)	C (3)	C(4)	C(5)	C(6)	C(7)	$C(8)$	C(9)	C(10)	CO
1	151.3	121.8	136.3	134.3	126.2	129.2	131.5	147.5	128.2	192.6
III	152.8	128.5	138.5	131.0	123,0	126.5	143.8	149.1	128.9	$\begin{aligned} & 206.6 \\ & (8.5) \end{aligned}$
IV	152.1	128.4	138.3	131.2	$\begin{aligned} & 128.8 \\ & (2.5) \end{aligned}$	125.7	$\begin{aligned} & 144.3 \\ & (5.5) \end{aligned}$	149.1	$\begin{aligned} & 128.9 \\ & (2.8) \end{aligned}$	$\begin{aligned} & 212.9 \\ & (6.2) \end{aligned}$
	C(1)	C(2)	C(3)	C(4)	C(5)	C(6)	CO	NCH_{3}		
VII	127.5	156.0	117.8	134.6	120.8	131.1	191.2	45.6		
VIII	137.5	157.9	119.9	134.5	129.4	125.7	194.8	54.4		
IX	142.3	157.4	120.9	134.0	128.7	125.6	210.7	52.6		
	(7.4)	(3.3)	(3.6)				(10.2)			

"All measurements in CDCl_{3} at 62.89 MHz ; assignments made by utilizing selective ${ }^{1} \mathrm{H}$ decoupling and literature substituent effects. Chemical shifts in ppm relative to external TMS, J values in Hz. Values in parentheses are ${ }^{n} J(\mathrm{P}, \mathrm{C})$ coupling constants.
35.4 ppm , whereas the bisdiphenylphosphinoethane, dppe, complex VI shows an AX spectrum, with signals at 50.6 and $32.6 \mathrm{ppm}\left({ }^{2} J(\mathrm{P}, \mathrm{P}) 35 \mathrm{~Hz}\right)$.
We assign these resonances to $\mathbf{P}(1)$ and $\mathbf{P}(2)$, respectively, based on: (a) the relationship between $\delta\left({ }^{31} \mathrm{P}\right)$ and the trans influence in Pd^{11} complexes [8,9] and (b) the assumption that the larger ${ }^{4} J\left(\mathrm{P}_{2} \mathrm{H}_{2}\right)$ coupling constant results from the trans phosphorus atom. (Selective ${ }^{1} \mathrm{H}\left\{{ }^{31} \mathrm{P}\right\}$ experiments show ${ }^{4} J(\mathrm{P}(1), \mathrm{H}(4)) 3 \mathrm{~Hz}$, $\left.{ }^{4} J(\mathrm{P}(2), \mathrm{H}(4)) 1 \mathrm{~Hz}\right)$. We note that the phosphorus atoms in VI experience an upfield shift, relative to $\left[\mathrm{PdCl}_{2}\right.$ (dppe) $], \delta 63.5 \mathrm{ppm}$.

(Dimethylamino)benzaldehyde derivatives

The dimethylamino acyl complexes (VIII-XII) were prepared as shown in eq. 2. This reaction is considerably slower than that for the quinoline aldehyde, with the

product slowly precipitating over a period of several days. Once again two equivalents of base were used, one of which served to trap the acid which formed. The use of the lithium salt of $\mathrm{PdCl}_{4}{ }^{2-}$ (generated in situ from PdCl_{2} and LiCl) is important since the reaction does not proceed if solid $\mathrm{Na}_{2} \mathrm{PdCl}_{4}$ is used.

Further, we find $\mathrm{Pd}(\mathrm{OAC})_{2}$ is also ineffective as starting material for this reaction. The source of these differing reactivities is not clear; however, as described in the experimental reaction, VIII can be obtained in 81% yield using LiCl . The complexes IX-XI were prepared in the same way as III-V.

$\left(L=P P h_{3},(I X) ;\right.$ PEt $_{3},(X) ; 4-\mathrm{NC}_{5} \mathrm{H}_{4} \mathrm{CH}_{3},(\mathbb{X})$)
In contrast to II, the dimer VIII is reasonably soluble in CDCl_{3}, so that ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra were obtainable. The four ${ }^{1} \mathrm{H}$ resonances $\mathrm{H}_{3}-\mathrm{H}_{6}$ appear at $\delta 7.50,7.60$, $7.27,7.65 \mathrm{ppm}$, respectively. Once again, the aldehyde proton is absent. The $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$ resonance is shifted to $\delta 3.44$ from its position at $\delta 2.92 \mathrm{ppm}$ in the free ligand, presumably due to the partial positive charge on nitrogen. This same effect is probably responsible for the low field shifts of $\mathrm{H}(3)$ and $\mathrm{H}(5)$. The ${ }^{13} \mathrm{C}$ spectrum of VIII shows the acyl carbon at $\delta 194.8 \mathrm{ppm}$, again at lower field than the free ligand carbonyl, $\delta 191.2 \mathrm{ppm}$, as well as $\mathrm{C}(1)$ and $\mathrm{C}(2)$ resonances at 137.5 and 157.9 ppm , respectively. The dimethylamino resonances move downfield on complexation from 45.6 to 54.4 ppm . A complete listing of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ data is given in Tables 2 and 3, and microanalytical and IR data are shown in Table 1. For the complexes IX and X
the ${ }^{31} \mathrm{P}$-spectra show resonances at 40.2 and 37.7 ppm , respectively. The dppe-complex XII gives the expected AX spectrum with signals at 53.8 and $35.4 \mathrm{ppm}\left({ }^{2} J(\mathrm{P}, \mathrm{P})\right.$ 28 Hz) and these resonances are assigned by analogy with those of complex VI.

Surveying our results, we note first that aldehyde carbon atoms are readily activated by various transition metals especially when kept close to the metal by prior coordination. Moreover, our systems are of additional interest in that the products arise from reactions which proceed at room temperature under mild conditions. We have no data on the mechanism of this activation; however, since we know of no published results which might lead us to suspect oxidative oxidation for palladium(II) we lean towards simple acid-base chemistry in which the metal assists by making the aldchyde proton more acidic through some form of coordination of the carbonyl. Further studies in this area are in progress.

Experimental

PdCl_{2} was obtained from Johnson Matthey Ltd., London. 8-methylquinoline, 4-picoline, dppe, PPh_{3} and PEt_{3} were purchased from Fluka AG, Buchs, and used directly. Ethyl-2(dimethylamino)benzoate was obtained from EGA Chemie, Sternheim, BRD, and 2-(dimethylamino)benzaldehyde was prepared according to the literature [10].

NMR spectra were recorded with CDCl_{3} solutions using Bruker HX 90 and WM-250 NMR spectrometers. Details are given in the Tables. IR spectra were recorded using a Beckmann IR 4250-spectrometer as KBr disks. Microanalyses were carried out by the analytical laboratory of the E.T.H. Zürich.

Preparation of quinoline-8-carbaldehyde (I)

N-Bromosuccinimide (NBS, $25 \mathrm{~g}, 0.14 \mathrm{~mol}$) was added to 8 -methylquinoline ($10 \mathrm{~g}, 0.07 \mathrm{~mol}$) in $40 \mathrm{ml} \mathrm{CCl}_{4}$. A catalytic amount of dibenzoyl peroxide was added to initiate the reaction, and the mixture refluxed until all the NBS had reacted. The mixture was cooled to $0^{\circ} \mathrm{C}$ and the succinimide was filtered off. The CCl_{4} layer was then extracted with $2 N \mathrm{NaOH}$, washed with water and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration i.v. was followed by recrystallization from ligroin to afford $17.3 \mathrm{~g}(82 \%)$ of 8-(dibromomethyl)quinoline as colorless needles. 8-(dibromomethyl)quinoline $(12.4 \mathrm{~g}, 0.04 \mathrm{~mol})$ was refluxed in 150 ml water for 1 h . The solution was then filtered hot, cooled, and treated with $2 N \mathrm{NaOH}$, from which the crude product separated. This was extracted with ether and the organic layer washed to neutrality with water. Concentration and recrystallisation from water yielded $5.2 \mathrm{~g}(80.6 \%)$ of I as fine colourless needles.

Preparation of II

Quinoline-8-carbaldehyde ($200 \mathrm{mg}, 1.27 \mathrm{mmol}$) in 5 ml ethanol was added slowly to $\mathrm{Na}_{2} \mathrm{PdCl}_{4}$ ($187 \mathrm{mg}, 0.636 \mathrm{mmol}$) dissolved in 20 ml absolute ethanol. The yellow solid which separated over a 20 min period was collected by filtration and dried i.v. ($188 \mathrm{mg}, 99 \%$). The second equivalent of aldehyde may be recovered from the solution by treatment with NaOH .

Preparation of $I I I-V$

All the bridge cleavage reactions were carried out in an essentially identical way.

Typically, a suspension of II in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated with two equivalents of ligand, The solid dissolved immediately. Concentration followed by recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane gave quantitative yields of the monomeric products.

Preparation of VI
A suspension of II ($32 \mathrm{mg}, 0.053 \mathrm{mmol}$) in acetone was treated with $\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}(42 \mathrm{mg}, 0.106 \mathrm{mmol})$ and $\mathrm{AgBF}_{4}(20.5 \mathrm{mg}, 0.106 \mathrm{mmol})$. The AgCl which separated was filtered off and the solution evaporated in vacuo. The crude product was recrystallized from acetone/ether to yield $59 \mathrm{mg}(75 \%)$ of orange crystals.

Preparation of VIII

To a solution of $\mathrm{PdCl}_{2}(276 \mathrm{mg}, 1.56 \mathrm{mmol})$ and $\mathrm{LiCl}(132 \mathrm{mg}, 3.12 \mathrm{mmol})$ in 30 ml MeOH was added neat 2-(dimethylamino)benzaldehyde ($464 \mathrm{mg}, 3.12 \mathrm{mmol}$). After three days at room temperature yellow crystals had separated and these were filtered off ($221 \mathrm{mg}, 49 \%$). If the reaction mixture is kept for three weeks, there is a gradual precipitation of additional product. Total yield $367 \mathrm{mg}(81 \%)$. The complex may be recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$.

Compounds IX-XII were prepared as described for III-VI.

Acknowledgements

Thanks are due Prof. L.M. Venanzi for helpful discussion, and the Swiss National Science Foundation for financial support.

References

1 G.W. Parshall, J. Molec. Catalysis, 4 (1978) 243; M. Orchin, Accts. Chem. Res., 14 (1981) 259.
2 L.S. Hegedus, O.P. Anderson, K. Zetterberg, G. Allen, K.S. Hansen, D.J. Olsen and A.B. Packard, Inorg. Chem., 16 (1977) 1887; C.M. Lukehart, Accts. Chem. Res., 14 (1981) 109; N. Sugita, J. Minkiewicz and R.F. Heck, Inorg. Chem., 17 (1978) 2809; F. Calderazzo, Angew. Chem., 89 (1977) 305.

3 H. Motschi, P.S. Pregosin and H. Rüegger, J. Organometal. Chem., 193 (1980) 397.
4 C. Anklin, P.S. Pregosin, F. Bachechi, P. Mura and L. Zambonelli, J. Organometal. Chem., 222 (1981) 175.

5 E.F. Landvatter and T.B. Rauchfuss, Organometallics, 1 (1982) 506.
6 H. Motschi, C. Nussbaumer, P.S. Pregosin, F. Bachechi, P. Mura and L. Zambonelli, Helv. Chim. Acta, 63 (1980) 2071.
7 G.C. Levy and G.L. Nelson, Carbon-13 Nuclear Magnetic Resonance for Organic Chemists Wiley-Interscience New York, 1972 and references therein.
8 G. Balimann, H. Motschi and P.S. Pregosin, Inorg. Chim. Acta, 23 (1977) 191.
9 G. Balimann and P.S. Pregosin, J. Magn. Res., 22 (1976) 235.
10 G.B. Barlin, J. Appl. Chem., 12 (1962) 148.

